Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
publications [2023/07/22 17:15] – [2023] murmannpublications [2023/12/18 10:28] – [2023] murmann
Line 7: Line 7:
 ====== 2023 ====== ====== 2023 ======
  
-  * L.RUptonALevy1M.DScottDRichW.-SKhwaY.-DChihM.-FChangSMitraPRainaand B. Murmann, "EMBER: a 100 MHz, 0.86mm2Multiple-Bits-per-Cell RRAM Macro in 40 nm CMOS with Compact Peripherals and 1.0 pJ/Bit Read Circuitry," ESSCIRC 2023.+  * MJang, MHaysW.-H. YuCLee, PCaragiuloARamkajPWang, A.JPhillipsNVitale, PTandonP. Yan, P.-IMakYChaeE.JChichilnisky, B. Murmann, D.G. Muratore"A 1024-Channel 268 nW/pixel 36×36 um2/channel Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces," to appear, IEEE J. Solid-State Circuits.
  
-  * PYan, A. AkhoundiN.PShahPTandon, D.GMuratoreE.JChichilnisky, and Boris Murmann, "Data Compression versus Signal Fidelity Tradeoff in Wired-OR Analog-to-Digital Compressive Arrays for Neural Recording," IEEE TransBioCAS, 2023. [[https://doi.org/10.1109/TBCAS.2023.3292058|DOI]]+  * L.RUpton, A. LevyM.DScottDRichW.-S. Khwa, Y.-D. Chih, M.-FChangSMitra, PRaina, and B. Murmann, "EMBER: a 100 MHz, 0.86mm2, Multiple-Bits-per-Cell RRAM Macro in 40 nm CMOS with Compact Peripherals and 1.0 pJ/Bit Read Circuitry," ProcESSCIRCLisbon, Portugal, Sep. 2023, pp. 469-472. [[https://doi.org/10.1109/ESSCIRC59616.2023.10268807|DOI]]
  
-  * M. Jang, W.-H. Yu, C. Lee, M. Hays, P. Wang, N. Vitale, P. Tandon, P. Yan, P.-I. Mak, Y. Chae, E.J. Chichilnisky, B. Murmann, and D.G. Muratore, "A 1024 Channel 268 nW per pixel 36x36 um2/ch Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces," in Symp. VLSI Circuits Dig., Kyoto, Japan, Jun. 2023, pp. 1-2.+  * P. Yan, A. Akhoundi, N.P. Shah, P. Tandon, D.G. Muratore, E.J. Chichilnisky, and Boris Murmann, "Data Compression versus Signal Fidelity Tradeoff in Wired-OR Analog-to-Digital Compressive Arrays for Neural Recording," IEEE Trans. BioCAS, vol. 17, no. 4, pp. 754-767, Aug. 2023. [[https://doi.org/10.1109/TBCAS.2023.3292058|DOI]] 
 + 
 +  * M. Jang, W.-H. Yu, C. Lee, M. Hays, P. Wang, N. Vitale, P. Tandon, P. Yan, P.-I. Mak, Y. Chae, E.J. Chichilnisky, B. Murmann, and D.G. Muratore, "A 1024 Channel 268 nW per pixel 36x36 um2/ch Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces," in Symp. VLSI Circuits Dig., Kyoto, Japan, Jun. 2023, pp. 1-2. [[https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185288|DOI]]
  
   * S. Weinreich and B. Murmann, "A 0.6–1.8-mW 3.4-dB NF Mixer-First Receiver With an N-Path Harmonic-Rejection Transformer-Mixer," IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1508-1518, Jun. 2023. [[https://doi.org/10.1109/JSSC.2022.3214226|DOI]]   * S. Weinreich and B. Murmann, "A 0.6–1.8-mW 3.4-dB NF Mixer-First Receiver With an N-Path Harmonic-Rejection Transformer-Mixer," IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1508-1518, Jun. 2023. [[https://doi.org/10.1109/JSSC.2022.3214226|DOI]]
Line 86: Line 88:
   * D.M. Stipanović, M.N. Kapetina, M.R. Rapaić, and B. Murmann, "Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach," J. Optim. Theory Appl., Nov. 2020. [[http://doi.org/10.1007/s10957-020-01776-w|DOI]]   * D.M. Stipanović, M.N. Kapetina, M.R. Rapaić, and B. Murmann, "Stability of Gated Recurrent Unit Neural Networks: Convex Combination Formulation Approach," J. Optim. Theory Appl., Nov. 2020. [[http://doi.org/10.1007/s10957-020-01776-w|DOI]]
          
-  * Wei-Hsiang Ho, Yi-Hsun Hsieh, B. Murmann, and Wei-Zen Chen, "A 32 Gb/s PAM-4 Optical Transceiver with Active Back Termination in 40 nm CMOS Technology," Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Oct. 2020, pp. 1-4[[http://dx.doi.org/10.1109/ISCAS45731.2020.9180483|DOI]]+  * Wei-Hsiang Ho, Yi-Hsun Hsieh, B. Murmann, and Wei-Zen Chen, "A 32 Gb/s PAM-4 Optical Transceiver with Active Back Termination in 40 nm CMOS Technology," Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Oct. 2020, pp. 1-4[[http://dx.doi.org/10.1109/ISCAS45731.2020.9180483|DOI]]
  
   * S. Weinreich, D. Muratore, Y. Chae, T. McKay, and B. Murmann, "Implications of Finite Clock Transition Time for LPTV Circuit Analysis," Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Oct. 2020, pp. 1-4. [[http://dx.doi.org/10.1109/ISCAS45731.2020.9180691|DOI]]   * S. Weinreich, D. Muratore, Y. Chae, T. McKay, and B. Murmann, "Implications of Finite Clock Transition Time for LPTV Circuit Analysis," Proc. IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, Oct. 2020, pp. 1-4. [[http://dx.doi.org/10.1109/ISCAS45731.2020.9180691|DOI]]
Line 523: Line 525:
   * E. Iroaga and B. Murmann, "Method and system for driver circuits of capacitive loads," US 7369080, May 6, 2008. [[https://patents.google.com/patent/US7369080B1|WWW]]   * E. Iroaga and B. Murmann, "Method and system for driver circuits of capacitive loads," US 7369080, May 6, 2008. [[https://patents.google.com/patent/US7369080B1|WWW]]
 ====== PhD Theses  ====== ====== PhD Theses  ======
 +  * G. Nyikayaramba, "Enabling low voltage electronics for ultrasonic structural health monitoring," 2023 [[https://searchworks.stanford.edu/view/in00000001244]]
 +  
   * Q. Lu, "TinyML computer vision using coarsely-quantized log-gradient input images," 2023 [[https://searchworks.stanford.edu/view/14801748]]   * Q. Lu, "TinyML computer vision using coarsely-quantized log-gradient input images," 2023 [[https://searchworks.stanford.edu/view/14801748]]